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INTRODUCTION 

An extensive review of  recent analytical and experimental 
developments in combined convection in internal flows has 
been published by Aung [1]. It has been observed, both 
experimentally and theoretically (see, for example, refs. [2- 
5]), that steady laminar recirculations may occur in a vertical 
parallel plate duct for certain combinations of the relevant 
parameters. In these flows, the fluid was assumed to be flow- 
ing along the duct with a fully developed velocity profile, i.e. 
the Poiseuille flow, at a constant temperature, which is the 
same as that of  the walls of  the duct. Then, at a specified 
location along the duct, the temperature of the wall was 
suddenly increased or decreased to another constant value. 
These recirculations may occur either adjacent to the walls 
of  the duct or at the duct centre depending upon whether the 
walls of the duct are heated or cooled. Ingham et  al. [2-4] 
performed numerical calculations which entirely predicted 
these flow recirculations, and the resulting fully developed 
flows at a large distance along the duct matched the analytical 
solution of  Aung and Worku [6]. However, there was an 
upstream migration of heat from the location where the 
temperature change occurred. The length of this upstream 
migration of  heat diminished as the Reynolds number 
became larger. In the limit as the Reynolds number becomes 
infinite, there is no penetration of heat upstream of  the 
location where there is a temperature change on the surface 
of the duct. This phenomenon was thoroughly investigated 
by Ingham et al. [2, 3]. 

When the duct is horizontal, the buoyancy force acts trans- 
versely to the main fluid flow direction in the duct. Ingham et 
aL [7] have extensively investigated this situation numerically 
over a large range of  values of  the governing parameters. 
In particular, they investigated the situation when at some 
location along the lower wall of  the duct the temperature of  
the surface is suddenly increased. They found as the Reynolds 
number becomes larger, with the Prandtl number and the 
ratio of the Grashof  to the square of  the Reynolds number 
held fixed, that the recirculating flow which is present in 
the vicinity of the temperature change increases in length 
upstream of  the temperature discontinuity. In fact, this 
length was found to enlarge linearly with increasing values 
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of the Reynolds number. Because of the difficulties en- 
countered by Ingham et al. [7] in obtaining numerical results 
at large values of  the Reynolds number, a scale analysis 
was performed in order to obtain the general upstream flow 
structure at large values of the Reynolds number, and the 
results presented in this paper. Essentially, the technique 
applied is very similar to that developed by Smith [8-10] 
when investigating constricted channel flows, where the 
length and pressure scales of  the upstream influence were 
sought as a function of the Reynolds number. The results of  
this large Reynolds number analysis for this heat transfer 
problem demonstrate that the solution differs considerably 
from the classical boundary-layer structure which develops 
downstream of  a leading edge and also from the situation 
when the duct is vertical. 

GOVERNING EQUATIONS 

The physical situation under consideration is exactly the 
same as that investigated numerically by Ingham et al. [7], 
namely steady laminar combined convection of a viscous 
fluid with velocity components (u, v) confined between two 
very wide horizontal parallel plates which form the infinite 
domain - ~  < x < ~ ,  - a  <~y ~< a (see Fig. 1). The walls 
of  the duct are maintained at the following temperatures : 

T = T e  - ~ < x < 0  y = - a  

T =  Th O ~ < x < ~  y = - a  

T =  Te - ~ < x < ~  y = + a .  (1) 

In the upstream region (x < 0), the fluid is fully developed 
and is at a constant temperature Te. At the duct exit (x --* 
~ ) ,  fully developed Poiseuille flow is attained and the tem- 
perature profile is a linear function of y, i.e. 

T = Th + ~ a  a) (Te -- Th). (2) 

It is assumed that gravity acts vertically downwards in the 
negative y direction perpendicular to the surface of  the duct, 
the Boussinesq approximation is invoked and viscous dis- 
sipation is neglected. 

The fluid and thermal fields within the horizontal two- 
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NOMENCLATURE 

a half width of duct 
C pressure gradient 
Cp specific heat at constant pressure 
g acceleration due to gravity 
Gr Grashof number, gfl (Th-- To) (2a)~/v 2 
k thermal conductivity 
L upstream separation length 
P non-dimensional pressure, (p+gp~v)2aC 
p pressure 
Pr Prandtl number, p v cp/k 
Re Reynolds number, (2a)C/(pv:) 
T fluid temperature 
x, y horizontal and vertical coordinates, 

respectively 
X. Y non-dimensional horizontal and vertical 

coordinates, equal to x/(2a) and y/(2a), 
respectively 

u, t~ fluid velocity components in the x and y 
directions, respectively 

U, V non-dimensional velocity components in 
the X and Y directions, equal to 
up~v/(2aC) and (Vp?)/(2aC), respectively. 

Greek symbols 
fl coefficient of thermal expansion 
5 thickness of viscous wall layer 
A streamwise length scale 
0 non-dimensional temperature, 

( T -  T~)/(Th- T~) 
). magnitude of  pressure force 
v kinematic viscosity 
p fluid density. 

Subscripts 
e entry 
h hot. 

dimensional parallel walled duct are governed by the equa- 
tions of  continuity, streamwise and transverse momentum, 
and energy, which on using the following non-dimen- 
sionalization parameters, are given by equations (4) (7) 

up~ v cp~ v 
X = x / 2 a  Y=y/2a U = 2 ~ C  V=2a(~  (3) 

P =  (p+gpey)2aC 0 = ( T -  T~)/'(Th- T~) 

~U OV 
e ~  + ~ = o (4) 

DU c~U) OP ~?2U ?.:U 
Re U ~ x + V ~ = - ~ + ~ X  2+-?Y2 (5) 

( ¢?V ?~V] r'~P ~ V  i~2V Gr 
Re lU?x+Vc~y t=- -~y+?x~__  ?y~ +~ee 0 (6) 

(c~X 2 ?y2) 

THE UPSTREAM STRUCTURE FOR Re >> 1 

When heat is applied at the lower wall there is an up- 
stream migration of heat caused by the buoyancy force 

and this acts as a thermal obstruction, which reduces the 
effective duct width. Figure 2 shows a typical streamline 
pattern at large values of  Re and Gr/Re 2 ; see ref. [7] Thus, 
the fluid flow must respond in anticipation of  this change of  
thermal boundary condition and the following analysis is 
designed to estimate the upstream length and pressure scales 
associated with the buoyancy-induced migration. In the situ- 
ation of  a constricted channel with isothermal flows, as stud- 
ied by Smith [8 10], the type of  constriction was defined 
according to its slope. For small constrictions, or dilations, 
where the slope <<O((Re) 3,,7), there exists virtually no non- 
linear upstream influence so that viscous wall layer motions 
develop from the leading edge of the constriction and not 
upstream [8, 9]. Hence, non-hnear effects such as viscous 
separation upstream of the obstacle cannot occur ; however, 
the present work has much in common with the work of  
Smith [10], where fluid driven through a channel responds 
upstream of  a severe asymmetric distortion resulting in fluid 
separation. 

In ref. [10] the characteristic Reynolds number is assumed 
to be large and the channel inlet flow profile is fully 
developed. The upstream disturbance is caused by the trans- 
verse pressure gradient induced by a small core flow dis- 
placement. A positive pressure perturbation in the vicinity 
of one wall results in the thickening of  the viscous layer and 
on the other wall the layer thins in order to conserve mass 
flux. The large transverse pressure gradient induced is sub- 
sequently found to maintain the growth of the core dis- 

y = a  

E n t r y  c o n d i t i o n s  

T =  T e 

u =2-'~r (Y2" a2) 

v = 0  
y = - a  

--oo 4-- X 

T = T  e u = v = O  

I I y 1 g ~ x 

I 
T - - T  e x = 0  T = T h  

U - - v - - O  U - - v = O  
Fig. 1. Schematic diagram of the physical situation, 
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I-  -I  
Fig. 2. Typical streamline pattern at large values of  Re and Gr/Re 2. 

× ~  + o o  

placement, which ultimately induces separation at a distance 
O(a (Re) 1/7) upstream of the flow constriction. 

In order to determine the upstream length and pressure 
scales for this heat transfer problem an analysis similar to 
that developed by Smith [10] is employed. Far upstream the 
motion is fully developed so that : 

U =  ( 1 - y 2 ) / 2  V = 0  P = P ~ - X  0 = 0  (8) 

where Pe is some O(1) constant. The parameters Gr/Re and 
Pr are assumed to be constant and the relevant upstream 
scalings are now sought as functions of  the Reynolds number, 
which is assumed to be very large. These are the thickness of  
the viscous wall layer, 6, the magnitude of  the pressure force, 
,~, and a streamwise length scale, A. Hence, following Smith 
[10], we assume that the scalings take the form : 

2 ~ ( R e )  q t~ ~ (Re) -r A ~ (Re) s (9) 

where q, r and s are constants to be determined. Since the 
upstream influence exists for Re ~ ~ ,  s >>- O, also the sep- 
aration point must be preceded by a change of sign in the 
streamwise pressure gradient at the lower wall so that q/> s, 
and any viscous layer cannot be thicker than the duct width 
which implies that r /> 0. Introducing the scalings (9) into 
equations (4)-(7) and seeking a balance between the terms, 
leads to q = 1, r = 0 and s = 1, so that the upstream scalings 
become : 

2 ~  Re 3 ~ 0 ( 1 )  A ~ R e .  (10) 

Hence, for Re >> 1, the separation point is located at a dis- 
tance O(aRe) upstream of  the onset of  heating. 

The scalings developed above differ considerably from the 
results obtained by Smith [10], where A ~ ( R e )  -b'7, 

~ (Re) -z/7 and 2 ~ (Re) 3/7, and therefore very important 
differences exist between the present work and that of Smith 
[10]. In these thermal problems, the upstream influence is 
implicit in the governing equations, which contrasts to the 
work of Smith [10], where the flow responds to a geometric 
change enforced through the boundary conditions. An 
additional difference is that a physical obstacle induces vis- 
cous separation upstream, while a thermally generated 
reverse flow region is itself a separated region and does not 
induce any additional upstream separated regions. 

The Poiseuille flow profile must develop a distinct non- 
linear character prior to the separation point in order for the 
laminar flow to bypass the recirculation region. In this 
respect some similarities exist with the constricted channel 
problem of  Smith [10]. Far upstream of  the separation point 
transverse momentum is generated via a small displacement 
of  the core flow, which induces in the transverse direction a 
pressure gradient and so momentum. Immediately upstream 
of  the separation point both the reversal of the streamwise 
pressure gradient and viscous wall layers occur. 

Separation of  the lower wall layer results in a detached 
shear layer forming around the recirculation region where 
U ~ O(1) as opposed to U ~ 0(6)  in the upstream wall 
layer. 

Correlation of the results of  Ingham et al. [7] gives the 
upstream separation length, L, to be 

L = 2a(8.84 x lO-6(Gr/Re2)23°Re 

+O.1131n(Gr/Re2)-0.303) (11) 

for 5 ~< Re <<. 20, 20 <~ Gr/Re 2 <~ 50, but with the restriction 
that Gr/Re 2 >! 17, so that recirculations do exist. Although 
the numerical results were obtained for moderate values of  
the Reynolds number, as opposed to large values, there is 
sufficient agreement between the theory and numerical 
results to conclude that the upstream reattachment length 
varies linearly with the Reynolds number. Unfortunately the 
theory does not predict the height, length or strength of  the 
recirculation zone and hence no further comparisons with 
the numerical predictions are possible. 

CONCLUSIONS 

The length and pressure scales associated with the up- 
stream influence of  buoyancy have been developed analy- 
tically and confirmed by the numerical calculations of  
Ingham et al. [7] The upstream recirculation region predicted 
in this two-dimensional study results from the inclusion of  
buoyancy within the governing equations, whereas in the con- 
stricted flow problem as considered by Smith [10] the up- 
stream viscous separation is caused by geometrical changes 
involving only the shape of the duct boundary. Hence, 
the different scales as obtained by Smith [10] and the present 
predictions are the result of different mechanisms which gen- 
erate upstream influences in these flows. In both situations, 
divergence from Poiseuille flow occurs far upstream of  the 
separation point and follows the form specified by Smith [10], 
in that core flow displacements induce transverse pressure 
gradients and momentum. Thus, unequal viscous wall layers 
develop where the upper and lower layers ultimately separ- 
ate. A physical change in the duct shape can induce a recir- 
culation but changes in the thermal boundary conditions can 
also induce a recirculation. 

It is concluded, because of  the upstream influence caused 
by the change in thermal boundary conditions, that classical 
boundary-layer calculations which start at the point of  heat- 
ing are not valid for non-vertical.ducts. Hence it is necessary 
to solve the full governing equations of  heat and fluid motion 
in non-vertical ducts both prior to and after the location 
where heating takes place even at large values of  the Reynolds 
number. 
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